

Thanks to our generous sponsors

logistimo

System Design leads to a more performant and equitable SC: The DRC model

Emmanuelle Assy

VillageReach Manager, Supply Chain Lead, System Design

Le remodelage des systèmes permet une chaîne d'approvisionnement plus équitable et performante ; exemple de la province d'Equateur en RDC.

The NGCA Initiative: (Nouvelle Génération des Chaînes d'Approvisionnement)

Goal:

To increase availability of medicines, health commodities & vaccines at service delivery points

Activities:

SYSTEM DESIGN

Achieving Supply Chain Excellence through System Design

Supply Chain Excellence

VillageReach system design work is breaking from conventional onesize-fits-all systems and is focusing on integrating the <u>unique logistical</u> <u>needs</u> and <u>constraints of each</u> <u>health structure</u> from the provincial to the health facility level.

Presentation Outline

villagereach.org

The Problem

What are we trying to solve? Health products do not reach the last mile

We are trying to solve....

Last Mile Accessibility

Health facilities/workers <u>do not</u> receive timely and sufficient quality health products to reach the children

We are trying to solve....

Supply chain issues directly affect service delivery and ultimately harm progress towards achieving SDG 3

The <u>weak</u> supply chain <u>link</u> can <u>limit</u> the effectiveness and efficiency of the <u>entire</u> supply

"A supply chain is no stronger than its weakest link" 2018 Global Health Supply Chain Summit Lusaka, Zambia

SC Constraints identification impacting delivery

Resource Constraints

- CCE
- Human resource
 utilization
- Equipment
- Transportation means
- Fuel
- Communication

Policy Constraints

- Fixed frequency
- Administrative boundaries
- Fixed buffer stocks
- Resupply policy

The Equateur Province

Max. CCE capacity

Minimal CCE Capacity

Discussing the Impact of policy constraint at health facility level

Min Distance

Max distance

Bolomba Health Zone

Problem solving Rationale

Constraints determine the performance of a system. Constraints generate additional burden to health workers.

2 By targeting the constraints and weakest links, it is possible to remove limitations and increase overall system performance.

3 Our system design analysis addresses resource constraints and policy constraints

Our Solution

How are we solving the problem? System Design

SD Intervention Overview

Implementers	MoH +VillageReach	
Geography	DRC, Subnational, Equateur Province	
Scope of Analysis:	Network + Inventory (CCE) optimization	
Intervention areas	Distribution + Inventory Control + Transportation + Organizational Capacity	
SC Tiers	Province, Health Zones, Health facility	
Problem solving approach	Baseline Analysis, Modeling, Segmentation, Theory of Constraints (TOC)	
Phases	Design + Small Scale Implementation + Evaluation	
Results	Performance, Costs, Stocks Outs, Equity *,	

Supply chain design analysis helped to answer these questions in DRC

Strategic Supply Chain Optimization

How do we design the supply chain network to deliver the right demand at the lowest possible cost?

Distribution Strategy Optimization

What is the optimal distribution strategy given Equator province specific needs and constraints (75% of health facilities are accessible by water)?

Transportation Strategy Optimization

Given a logistics network and a defined distribution strategy, how can we best use my available transportation resources? Where are the needs and gap?

Inventory Optimization

Given <u>demand variability</u> and service level requirements, what is the optimal inventory replenishment plan and control to meet the needs? Where are the needs and gap?

03

Our Approach

How do we implement the solution?

Addressing the weakest links

Results

What did we get after implementing the solution?

Result 1: Vaccines, PDSS commodities & HIV commodities could be transported together in some zones

In Lolanga Mampoko and Mankanza, some SANRU (malaria) commodities could also be transported:

Lolanga-Mampoko: +89% of SANRU volumes Mankanza: +28% of SANRU volumes In Bolomba, additional boats would be required to transport other commodities

²¹ *when family planning products are distributed (biannually, volume of about 6 m³) an additional boat will be requited for Mankanza. See annex for full assumptions.

VILLAGE REACH.

Result 2: Improved availability of stocks at zonal warehouses

An independent study by Acasus showed zero stockouts in the 3 zonal warehouses supported by the NGCA Initiative

Doses

Result 3: Stock availability has allowed for increased consumption

Average Monthly Consumption (Doses)

Month AMC was calculated (average for the previous 3 months)

Result 4: System re-design led to reduced costs

(baseline pre-CCE deployment)* (baseline post-CCE deployment)*

Sept. 2017-Jan. 2018 (endline post-NGCA)

Understanding Equity from health workers perspective

- Ineffective health systems rely on <u>individual efforts</u> of health workers, who already bear the most burden, to operate.
- The burden is <u>unequally distributed</u> amongst health workers.
- (In)Equity parameters at health facility level include distance, time, route conditions, electricity, communication network, funding, partners support, existing policies, seasonality, access)

Equity parameters can be used as optimization criteria at design time to ensure Health facilities/workers <u>do</u> receive timely and sufficient quality vaccines to reach the children in their respective areas.

	Traditional multi-leve supply chain	Optimized supply chain
Demand	Population-based	Consumption-based
Distribution	Pull systems	Informed push
Stock levels	Monthly to zones	Every 2 months to SDPs
Segmentation	Siloed supply chains	Resource sharing
Network	Administrative boundaries	Optimized network
Frequency	One month policy	Resource sharing
Emergency	Provincial stores	Local hubs with min. distance
Scheduling.	Individual plans	Integrated distribution plans
SC Capability	Limited	Reinforced at all levels

Next Steps: Replication | Expansion

05 Bottom Line

What does this mean for us?

Importance of the work

Conclusions

SUMMARY

Network optimization can effectively improve last mile accessibility in the most constrained environments

System Design is a core element of supply chain excellence

The design of a supply chain determines its capabilities Examples and impact on costs, availability

System design is entry point to **holistic supply chain transformation** across data, people, processes.

Inequities parameters can used as optimization criteria for a fair and equitable SC for health workers

Thank you

Thanks to our generous sponsors

logistimo

