Improving health supply chain design efficiency through rapid and flexible cost modeling

Dorothy Thomas – Associate, Health Systems, VillageReach
Michael Krautmann – Research Manager, William Davidson Institute
Identifying effective and efficient supply chain (SC) designs can be a complex and resource-intensive process.

Challenge 1: Lack of robust SC cost data for strategic decision-making

- Detailed costing analyses often require extensive time and resource investments
- Lack of widely available reference data to understand what certain SC activities should cost.

Challenge 2: Difficulty analyzing potential SC design improvements

- Typical cost studies and LMIS systems provide snapshot of current SC design
- Software to explore the impact of different SC design changes can be resource-intensive and require specialized skills
Estimates by UNICEF place the cost at $250,000 to $500,000¹ over 3-6 months for one country to analyze potential SC re-design options.

Data collection and modeling are the primary cost contributors.

Opportunity for rapid and flexible tools to address data and design challenges

Example instances where directional insights are valuable but limited resources for detailed analysis:

• **Advocating** for SC funding or improvements
• **Streamlining** early-stage SC design analyses
• **Demonstrating** cost impact of SC decisions
• **Validating** donor budgets or bids from private logistics companies

Addressing these use cases could **reduce barriers** to conducting SC design analyses and **expand opportunities** to implement innovative design changes.
WDI and VillageReach addressing this opportunity with new tool to model operating costs of SC design scenarios

Overview of tool & modeling approach:

Modeling a single supply chain design in Excel:

1. System Inputs
 Define the scenario to be modeled – the supply chain design and overall country context

2. Back-end Modeling
 Estimate the activities and resources needed to execute the SC design in the specified country context

3. Cost Outputs
 Calculate the expected annual cost of the resources and activities that are needed

4. Scenarios
 Repeat analysis with different sets of inputs to test different design or country context options
WDI and VillageReach addressing this opportunity with new tool to model operating costs of SC design scenarios

Inputs:

Three Types of Data Inputs:
- Overall system Information:
- Unit Cost data:
- SC Design Policies:

Focus on data inputs that are easier for central-level stakeholders to estimate.

Ex.: Partial data inputs for overall system network information
WDI and VillageReach addressing this opportunity with new tool to model operating costs of SC design scenarios

Outputs:

Aligned with common global health SC costing methodologies

Costs categorized based on:
- Supply Chain Function
- Cost Category
- Tier/level in the supply chain
WDI/VillageReach building set of reference (proxy) data from existing global health SC costing studies.

Two ways to use proxy data:

1. Load directly into model via preformatted templates

2. Use as reference point for estimating a missing data point
How to improve speed and flexibility of tool?

Standardized design “levers” to replicate most SC strategies

User can adjust several design parameters to replicate their program’s SC design:

- Number of SC tiers (levels) that manage storage & distribution
- Frequency of delivery / length of order period
- Inventory policy / safety stock levels
- Ordering & delivery travel patterns
- Types of vehicles
- Timing of ordering & delivery (i.e. separate vs. simultaneous)
- Roles and responsibilities for storage, data capture, and delivery functions

Deep-dive example: *Travel patterns in health SC designs*

Point-to-point travel
- Distribution from central to regional medical stores
- Facility staff travel to submit orders and/or collect their facility’s products

Route-based travel
- Mobile warehouse-style models (e.g. Informed Push)
- Centrally-managed ordering and/or delivery (e.g. Assisted Pull, Direct Delivery)
Cons (Tradeoffs):
- Potential for bias if geography or demand patterns highly variable or unusual
- Represents “best-case” estimate of costs; no inefficiency or variability

Pros (Advantages):
- Lower data requirement
- Computationally efficient
- Inaccuracies likely consistent for most scenarios in a given study
Understand potential accuracy of modeling tool in order to 1) deploy it most effectively and 2) identify opportunities for improving modeling approach.

OBJECTIVE

- How accurate can the model results be under ideal conditions?
- How does that accuracy level change as supply chain data quality deteriorates?

KEY QUESTIONS

- Use existing SC costing study results as “gold standard” to validate model predictions
 - Initial dataset – 2015 Zimbabwe Assisted Pull System (ZAPS) pilot evaluation
- Split into two sub-studies based on quality of individual data points, and alignment with model calculation approach
 - Best-case scenario – Compare costs only where confident in quality/alignment
 - Rapid scenario – Compare all data points, even if misaligned with model

APPROACH

How to test the impact of these assumptions on model accuracy? Answer: validation exercise.
Results and takeaways from initial validation exercise

- Level of error generally aligned with initial expectations
 - Model can be very accurate with good data/implementation quality (1-6% MAPE).
 - Reliability decreases as input data accuracy deteriorates (12-22% MAPE)

- Additional validation testing will clarify results in several ways:
 - Develop a larger sample & more robust picture of overall tool accuracy
 - Test correlation of accuracy correlation with specific factors. Better or worse for specific country, SC, or cost types?
 - Once several data sets are compiled, can begin to also test storage/mgmt. costs
Next steps for refining, testing, & disseminating tool

• Compiling additional data on health supply chain costs
 – Full costing study datasets for use as proxy data templates
 – Individual data points (e.g. warehousing costs, supply chain demand volume) as reference points for estimating input values

• Identifying opportunities for testing tool in live decision-making context:
 – Cross River/Kano (potential collaboration with VillageReach and Merck for Mothers): analyzing potential design options for improving reproductive health supply chains
Thanks to our generous sponsors